If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30^2+7^2=c^2
We move all terms to the left:
30^2+7^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+949=0
a = -1; b = 0; c = +949;
Δ = b2-4ac
Δ = 02-4·(-1)·949
Δ = 3796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3796}=\sqrt{4*949}=\sqrt{4}*\sqrt{949}=2\sqrt{949}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{949}}{2*-1}=\frac{0-2\sqrt{949}}{-2} =-\frac{2\sqrt{949}}{-2} =-\frac{\sqrt{949}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{949}}{2*-1}=\frac{0+2\sqrt{949}}{-2} =\frac{2\sqrt{949}}{-2} =\frac{\sqrt{949}}{-1} $
| 2(9+x)=17+2x | | 8y+ 1=3y+ 6 | | 4x+2=46; | | 6x−12=72 | | 6(1+6v)=−(3v−6) | | 2(4v-8)=10-v | | 2x-9=-7x+21 | | 13+x=47; | | 3x+11=7-9 | | 2(2y-6)=10y | | $3.20=$18.65-w;w$15.45,$15.75,$16.35,$16.45 | | 7+1=0j–10j | | b.25-3 | | z/2=27; | | 4x+2=4x+9+8 | | 45-3=7x | | 9(-10x+20)=-450 | | -11x+6-4x+16x=0 | | 4x+2=4x9+8 | | 6=s/4.5 | | 7m²-12m-5=0 | | kX4=255 | | 3÷n=8 | | a-19=22; | | -210=-5(10x-8) | | 4x^2-32=80 | | 10k–16=5(2k+4) | | 3x=99; | | -3+x=53 | | -4-x+2x=-10 | | 2(x+4)+1/2(6x-8)=24 | | 139-x=202 |